1. $\lim _{x \rightarrow 0} \frac{2 x^{6}+6 x^{3}}{4 x^{5}+3 x^{3}}$ is
(A) 0
(B) $\frac{1}{2}$
(C) 1
(D) 2
(E) nonexistent

$$
f(x)=\left\{\begin{array}{cc}
x^{2}-3 x+9 & \text { for } x \leq 2 \\
k x+1 & \text { for } x>2
\end{array}\right.
$$

2. The function f is defined above. For what value of k, if any, is f continuous at $x=2$?
(A) 1
(B) 2
(C) 3
(D) 7
(E) No value of k will make f continuous at $x=2$.

3. The function f is given by $f(x)=\frac{a x^{2}+12}{x^{2}+b}$. The figure above shows a portion of the graph of f. Which of the following could be the values of the constants a and b ?
(A) $a=-3, b=2$
(B) $a=2, b=-3$
(C) $a=2, b=-2$
(D) $a=3, b=-4$
(E) $a=3, b=4$
4. If $f(x)=3 x^{2}+2 x$, then $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ is...
(A) $6 x+2$
(B) $6 x$
(C) 0
(D) nonexistent
(E) 2
5.

The graph of the function f is shown above. Which of the following statements is false?
(A) $\lim _{x \rightarrow 2} f(x)$ exists.
(B) $\lim _{x \rightarrow 3} f(x)$ exists.
(C) $\lim _{x \rightarrow 4} f(x)$ exists.
(D) $\lim _{x \rightarrow 5} f(x)$ exists.
(E) The function f is continuous at $x=3$.

$$
g(x)= \begin{cases}\sin \frac{x \pi}{4}, & x<3 \\ x \sqrt{2}, & x=3 \\ \frac{x \sqrt{2}}{4 x-6}, & x>3\end{cases}
$$

6. For the function above, which of the following would be the reason(s) why the function, $g(x)$, is not continuous at $x=3$?
I. $g(3)$ is undefined.
II. $\lim _{x \rightarrow 3} g(x)$ does not exist.
III. $\lim _{x \rightarrow 3} g(x) \neq g(3)$.
(A) III only
(B) II only
(C) I and II only
(D) I only
(E) II and III only
7. $\lim _{x \rightarrow 2^{+}} \frac{3-2 x}{x-2}$ is...
(A) 0
(B) ∞
(C) $-\infty$
(D) 2
(E) $1 / 2$
8. Let f be a function that is continuous on the closed interval [2,4] with $f(2)=10$ and $f(4)=20$. Which of the following is guaranteed by the Intermediate Value Theorem?
AP (A) $f(x)=13$ has at least one solution in the open interval $(2,4)$.
(B) $f(3)=15$
(C) f attains a maximum on the open interval $(2,4)$.
(D) $f(x)=9$ has at least one solution in the open interval $(2,4)$.
(E) $f(x)$ has at least one zero in the open interval $(2,4)$.

Calculus Free Response Practice \#1 Calculator Permitted

Consider the function $h(x)=\frac{-2 x-\sin x}{x-1}$ to answer the following questions.
a. Find $\lim _{x \rightarrow \frac{\pi}{2}}[h(x) \cdot(2 x-2)]$. Show your analysis.
b. Identify the vertical asymptote(s), if any exist, of $h(x)$ and justify the existence by writing a limit.
c. Identify the horizontal asymptote(s), if any exist, of $h(x)$ and justify the existence by writing a limit.
d. Explain why the Intermediate Value Theorem guarantees a value of c on the interval $[1.5,2.5]$ such that $h(c)=-4$. Then, find c.

AP Calculus Free Response Practice \#2 Calculator NOT Permitted

Graph of $g(x)$

$$
f(x)= \begin{cases}a x+3, & x<-3 \\ x^{2}-3 x, & -3 \leq x<2 \\ b x-5, & x \geq 2\end{cases}
$$

Equation of $f(x)$
Pictured above is the graph of a function $g(x)$ and the equation of a piece-wise defined function $f(x)$. Answer the following questions.
a. Find $\lim _{x \rightarrow 1^{+}}[2 g(x)-f(x) \cdot \cos \pi x]$. Show your work applying the properties of limits.
b. On its domain, what is one value of x at which $g(x)$ is discontinuous? Use the three part definition of continuity to explain why $g(x)$ is discontinuous at this value.
c. For what value(s) of a and b, if they exist, would the function $f(x)$ be continuous everywhere? Justify your answer.

AP Calculus

Extra Practice on Limits and Multiple Choice Practice

For questions $1-5$, refer to the graph of $f(x)$ to the right. Find the value of each indicated limit. If a limit does not exist, give a reason.

1.	$\lim _{x \rightarrow-3^{+}} f(x)+\lim _{x \rightarrow 5^{+}} 3 f(x)$	
2.	$\lim _{x \rightarrow 1^{2}}\left\lfloor\frac{1}{2} f(x)+\cos (\pi x)\right\rfloor$	
3.	$\lim _{x \rightarrow 4^{-}} f(x)$	
4.	$\lim _{x \rightarrow-\infty} f(x)$	
5.	$\lim _{x \rightarrow-3} f(x)$	

For questions $6-11$, find the value of each limit analytically. If a limit does not exist, state why.
6. $\lim _{x \rightarrow 0} \frac{x^{3}-2 x^{2}+3 x}{x}$
7. $\lim _{x \rightarrow 0} \frac{3 \tan x}{x \sec x}$
8. $\lim _{x \rightarrow 3^{+}} \frac{x^{2}-4}{x^{2}-x-6}$
9. $\lim _{x \rightarrow 2^{-}} \ln (-x+2)$
10. $\lim _{x \rightarrow \infty} \frac{x^{3}-2 x^{2}+3 x}{x^{2}-3 x^{3}}$
11. $\lim _{x \rightarrow \infty} 5+\frac{5}{x}$

For question $12-16$, use the equation $g(x)$ below and the graph of the function $f(x)$.

$$
g(x)= \begin{cases}3|x+3|, & x<-2 \\ \cos \left(\frac{\pi x}{2}\right), & -2 \leq x<2 \\ a x^{2}+2 x, & x \geq 2\end{cases}
$$

Graph of $f(x)$

12. Is $g(x)$ continuous at $x=-2$. [Base your response on the three part definition of continuity.]
13. For what value(s) of a is $g(x)$ continuous at $x=2$?
14. For what value(s) of b is the function $f(x)$ discontinuous? At which of these values does $\lim _{x \rightarrow b} f(x)$ exist? Explain your reasoning.
15. Find $\lim _{x \rightarrow 2^{+}}[g(x)+2 f(x)]$.
16. Which of the following limits do(es) not exist? Give a reason for your answers.

$\lim _{x \rightarrow 1} f(x)$	$\lim _{x \rightarrow 4} f(x)$	$\lim _{x \rightarrow 0^{-}} f(x)$

17. Find the values of k and m so that the function below is continuous on the interval $(-\infty, \infty)$.

$$
f(x)= \begin{cases}x^{2}-k x+3, & x<-2 \\ 2 x-3, & -2 \leq x \leq 3 \\ 3-2 m, & x>3\end{cases}
$$

18. $\lim _{x \rightarrow 0} \frac{4 x-3}{7 x+1}=$
A. ∞
B. $-\infty$
C. 0
D. $\frac{4}{7}$
E. -3
19. $\lim _{x \rightarrow \frac{1}{3}} \frac{9 x^{2}-1}{3 x-1}=$
A. ∞
B. $-\infty$
C. 0
D. 2
E. 3
20. $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x^{2}-4}=$
A. 4
B. 0
C. 1
D. 3
E. 2
21. The function $G(x)=\left\{\begin{array}{ll}x-3, & x>2 \\ -5, & x=2 \\ 3 x-7, & x<2\end{array}\right.$ is not continuous at $x=2$ because \ldots
A. $G(2)$ is not defined
B. $\lim _{x \rightarrow 2} G(x)$ does not exist
C. $\lim _{x \rightarrow 2} G(x) \neq G(2)$
D. Only reasons B and C
E. All of the above reasons.
22. $\lim _{x \rightarrow \infty} \frac{-3 x^{2}+7 x^{3}+2}{2 x^{3}-3 x^{2}+5}=$
A. ∞
B. $-\infty$
C. 1
D. $\frac{7}{2}$
E. $-\frac{3}{2}$
23. $\lim _{x \rightarrow-2} \frac{\sqrt{2 x+5}-1}{x+2}=$
A. 1
B. 0
C. ∞
D. $-\infty$
E. Does
24. If $f(x)=3 x^{2}-5 x$, then find $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.
A. $3 x-5$
B. $6 x-5$
C. $6 x$
D. 0
E. Does not exist
25. $\lim _{x \rightarrow-\infty} \frac{2-5 x}{\sqrt{x^{2}+2}}=$
A. 5
B. -5
C. 0
D. $-\infty$
E. ∞
26. The function $f(x)=\frac{2 x^{2}+x-3}{x^{2}+4 x-5}$ has a vertical asymptote at $x=-5$ because...
A. $\lim _{x \rightarrow-5^{+}} f(x)=\infty$
B. $\lim _{x \rightarrow-5^{-}} f(x)=-\infty$
C. $\lim _{x \rightarrow-5^{-}} f(x)=\infty$
D. $\lim _{x \rightarrow \infty} f(x)=-5$
E. $f(x)$ does not have a vertical asymptote at $x=-5$
27. Consider the function $H(x)=\left\{\begin{array}{l}3 x-5, \quad x<3 \\ x^{2}-2 x,\end{array} \quad x \geq 3\right.$. . Which of the following statements is/are true?
I. $\lim _{x \rightarrow 3^{-}} H(x)=4$.
II. $\lim _{x \rightarrow 3} H(x)$ exists.
III. $H(x)$ is continuous at $x=3$.
A. I only
B. II only
C. I and II only
D. I, II and III
E. None of these statements is true
