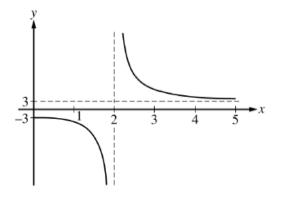
1.
$$\lim_{x \to 0} \frac{2x^6 + 6x^3}{4x^5 + 3x^3}$$
 is
(A) 0 (B) $\frac{1}{2}$ (C) 1 (D) 2 (E) nonexistent

 $f(x) = \begin{cases} x^2 - 3x + 9 & \text{for } x \le 2\\ kx + 1 & \text{for } x > 2 \end{cases}$

2. The function f is defined above. For what value of k, if any, is f continuous at x = 2?

- (A) 1
- (B) 2
- (C) 3
- (D) 7
- (E) No value of k will make f continuous at x = 2.



3. The function f is given by $f(x) = \frac{ax^2 + 12}{x^2 + b}$. The figure above shows a portion of the graph of f. Which of the following could be the values of the constants a and b?

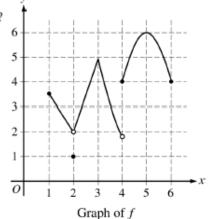
- (A) a = -3, b = 2(B) a = 2, b = -3
- (C) a = 2, b = -2(D) a = 3, b = -4
- (E) a = 3, b = 4

4. If
$$f(x) = 3x^2 + 2x$$
, then $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ is...
(A) $6x + 2$
(B) $6x$
(C) 0
(D) nonexistent
(E) 2

5.

The graph of the function f is shown above. Which of the following statements is false?

- (A) $\lim_{x \to 2} f(x)$ exists.
- (B) $\lim_{x \to 3} f(x)$ exists.
- (C) $\lim_{x \to 4} f(x)$ exists.
- (D) $\lim_{x \to 5} f(x)$ exists.
- (E) The function f is continuous at x = 3.



$$g(x) = \begin{cases} \sin \frac{x\pi}{4}, & x < 3\\ x\sqrt{2}, & x = 3\\ \frac{x\sqrt{2}}{4x-6}, & x > 3 \end{cases}$$

6. For the function above, which of the following would be the reason(s) why the function, g(x), is not continuous at x = 3?

I. $g(3)$ is undefined.	II.	lim $g(x)$ does not exist.	III.	$\lim g(x) \neq g(3).$
		$x \rightarrow 3$		$x \rightarrow 3$

- (A) III only
- (B) II only
- (C) I and II only
- (D) I only
- (E) II and III only

7.	$\lim_{x \to 2^+} \frac{3-2x}{x-2}$ is
	(A) 0
	(B) ∞
	∞ (O)
	(D) 2
	(E) $\frac{1}{2}$

8. Let f be a function that is continuous on the closed interval [2, 4] with f(2) = 10 and f(4) = 20. Which of the following is guaranteed by the Intermediate Value Theorem?

- **AP** (A) f(x) = 13 has at least one solution in the open interval (2, 4).
 - (B) f(3) = 15
 - (C) f attains a maximum on the open interval (2, 4).
 - (D) f(x) = 9 has at least one solution in the open interval (2, 4).
 - (E) f(x) has at least one zero in the open interval (2, 4).

Calculus Free Response Practice #1 Calculator Permitted

Consider the function $h(x) = \frac{-2x - \sin x}{x - 1}$ to answer the following questions.

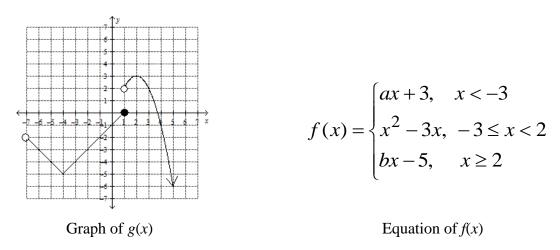
a. Find $\lim_{x \to \frac{\pi}{2}} [h(x) \cdot (2x-2)]$. Show your analysis.

b. Identify the vertical asymptote(s), if any exist, of h(x) and justify the existence by writing a limit.

c. Identify the horizontal asymptote(s), if any exist, of $h(x)$ and justify the existence by writing

d. Explain why the Intermediate Value Theorem guarantees a value of *c* on the interval [1.5, 2.5] such that h(c) = -4. Then, find *c*.

AP Calculus Free Response Practice #2 Calculator NOT Permitted



Pictured above is the graph of a function g(x) and the equation of a piece-wise defined function f(x). Answer the following questions.

a. Find $\lim_{x \to 1^+} [2g(x) - f(x) \cdot \cos \pi x]$. Show your work applying the properties of limits.

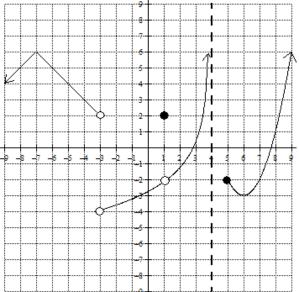
b. On its domain, what is one value of x at which g(x) is discontinuous? Use the three part definition of continuity to explain why g(x) is discontinuous at this value.

c. For what value(s) of *a* and *b*, if they exist, would the function f(x) be continuous everywhere? Justify your answer.

AP Calculus Extra Practice on Limits and Multiple Choice Practice

For questions 1 - 5, refer to the graph of f(x) to the right. Find the value of each indicated limit. If a limit does not exist, give a reason.

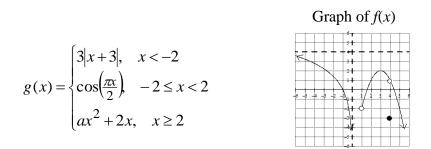
1.	$\lim_{x \to -3^{+}} f(x) + \lim_{x \to 5^{+}} 3f(x)$	
2.	$\lim_{x \to 1} \left \frac{1}{2} f(x) + \cos(\pi x) \right $	
3.	$\lim_{x \to 4^{-}} f(x)$	
4.	$\lim_{x \to -\infty} f(x)$	
5.	$\lim_{x \to -3} f(x)$	



For questions 6 – 11, find the value of each limit analytically. If a limit does not exist, state why.

6. $\lim_{x \to 0} \frac{x^3 - 2x^2 + 3x}{x}$	7. $\lim_{x \to 0} \frac{3\tan x}{x \sec x}$
8. $\lim_{x \to 3^+} \frac{x^2 - 4}{x^2 - x - 6}$	9. $\lim_{x \to 2^{-}} \ln(-x+2)$
10. $\lim_{x \to \infty} \frac{x^3 - 2x^2 + 3x}{x^2 - 3x^3}$	11. $\lim_{x \to \infty} 5 + \frac{5}{x}$

For question 12 - 16, use the equation g(x) below and the graph of the function f(x).



12. Is g(x) continuous at x = -2. [Base your response on the three part definition of continuity.]

- 13. For what value(s) of *a* is g(x) continuous at x = 2?
- 14. For what value(s) of *b* is the function f(x) discontinuous? At which of these values does $\lim_{x \to b} f(x)$ exist? Explain your reasoning.

15. Find $\lim_{x \to 2^+} [g(x) + 2f(x)].$

ן ג	$\inf_{x \to 1} f(x)$	$\lim_{x \to 4} f(x)$	$\lim_{x \to 0^{-}} f(x)$

17. Find the values of *k* and *m* so that the function below is continuous on the interval $(-\infty,\infty)$.

$$f(x) = \begin{cases} x^2 - kx + 3, & x < -2\\ 2x - 3, & -2 \le x \le 3\\ 3 - 2m, & x > 3 \end{cases}$$

18.
$$\lim_{x \to 0} \frac{4x - 3}{7x + 1} =$$

$\lambda \rightarrow 0$ / λ +	1			
A. ∞	B. −∞	C. 0	D. $\frac{4}{7}$	E. –3
19. $\lim_{x \to \frac{1}{3}} \frac{9x^2}{3x}$	$\frac{-1}{1} =$			
Α. ∞	B. −∞	C. 0	D. 2	E. 3
20. $\lim_{x \to 2} \frac{x^3 - x^3}{x^2 - x^2}$	$\frac{8}{4} =$			
A. 4	B. 0	C. 1	D. 3	E. 2
21. The function $G(x) = \begin{cases} x-3, & x > 2\\ -5, & x = 2 \text{ is not continuous at } x = 2 \text{ because}\\ 3x-7, & x < 2 \end{cases}$				
A. G(2	?) is not defined	B. $\lim_{x \to 2} G(x)$ does not	ot exist C.	$\lim_{x \to 2} G(x) \neq G(2)$
D. Onl	y reasons B and C	E. All of the above r	easons.	
22. $\lim_{x \to \infty} \frac{-3x}{2x^3}$	$\frac{x^2 + 7x^3 + 2}{3 - 3x^2 + 5} =$			
A. ∞	B. −∞	C. 1	D. $\frac{7}{2}$	E. $-\frac{3}{2}$

23.
$$\lim_{x \to -2} \frac{\sqrt{2x+5}-1}{x+2} =$$
A. 1
B. 0
C. ∞
D. $-\infty$
E. Does
Not
Exist
24. If $f(x) = 3x^2 - 5x$, then find $\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$.
A. $3x - 5$
B. $6x - 5$
C. $6x$
D. 0
E. Does not exist
25. $\lim_{x \to -\infty} \frac{2-5x}{\sqrt{x^2+2}} =$
A. 5
B. -5
C. 0
D. $-\infty$
E. ∞
26. The function $f(x) = \frac{2x^2 + x - 3}{x^2 + 4x - 5}$ has a vertical asymptote at $x = -5$ because...
A. $\lim_{x \to -5} f(x) = \infty$
B. $\lim_{x \to -5} f(x) = -\infty$
C. $\lim_{x \to -5} f(x) = \infty$
D. $\lim_{x \to -5} f(x) = -\infty$
E. $f(x)$ does not have a vertical asymptote at $x = -5$
27. Consider the function $H(x) = \begin{cases} 3x - 5, x < 3 \\ x^2 - 2x, x \ge 3 \end{cases}$. Which of the following statements is/are true?
I. $\lim_{x \to 3} H(x) = 4$.
II. $\lim_{x \to 3} H(x)$ exists.
III. $H(x)$ is continuous at $x = 3$.
A. I only
B. II only
C. I and II only
D. I, II and III
E. None of these statements is true