Lesson \#3- Analytically Finding the Derivative of Polynomial, Polynomial Type, Sine, and Cosine Functions

Consider the function $f(x)=3$. What does the graph of this function look like? If a tangent line were drawn to $f(x)$ at any value of x, what would the slope of that tangent line be?

Based on this though process, if $f(x)=c$, where c is any constant, then $f^{\prime}(x)=$ \qquad -

Shown below are 6 different polynomial, or polynomial-type, functions. Watch as I find the derivative of each function. See if you can figure out the algorithm that I am using for each function.

Function, $f(x)$	Derivative, $f^{\prime}(x)$
$f(x)=3 x^{2}-2 x+3$	
$f(x)=-5 x^{3}+2 x^{2}-3 x+1$	
$f(x)=6-3 x^{3}+6 x^{4}$	
$f(x)=-2 x^{-1}+3 x^{-2}$	
$f(x)=6 x^{\frac{2}{3}}+4 x^{-2}$	
$f(x)=-6 x^{-\frac{1}{2}}+3 x^{\frac{1}{2}}$	

Based on what you have seen in the table above, you should now be able to infer how to complete the following Power Rule for Differentiation.

$$
\frac{d}{d x}\left[x^{n}\right]=
$$

In order to apply the Power Rule for Differentiation, the equation must be written in "polynomial form." To what do you suppose "polynomial form" refers?

Find $f^{\prime}(x)$ for each of the following functions. Leave your answers with no negative or rational exponents and as single rational functions, when applicable.

$f(x)=\frac{2}{x^{2}}-4 x^{3}$	$f(x)=\frac{3 x^{4}-3 x^{2}-2 x}{x}$
$f(x)=(x+3)(x+2)(2 x+1)$	$f(x)=\frac{x^{3}-5 x^{2}}{x^{5}}$
$f(x)=\frac{3 x}{\sqrt[3]{x^{2}}}$	$f(x)=-4 x^{\frac{3}{4}}+2 x^{\frac{1}{4}}$

Remember two trigonometric identities that we will use to find the derivatives of the sine and cosine functions.

$$
\begin{aligned}
& \cos (a+b)= \\
& \sin (a+b)= \\
&
\end{aligned}
$$

Use $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ to find $f^{\prime}(x)$ for each of the following functions. Your results will show the derivative of the sine and cosine functions.

$f(x)=\sin x$	$f(x)=\cos x$

$\frac{d}{d x}[\sin x]=$ \qquad $\frac{d}{d x}[\cos x]=$ \qquad

For each of the following functions, find the equation of the tangent line to the graph of the function at the given point.

| $f(x)=(2 x-1)(x+1)^{2}$ when $x=-1$ | $f(\theta)=4 \sin \theta-\theta$ when $\theta=\frac{\pi}{2}$ |
| :--- | :--- | :--- |
| $g(\theta)=2 \theta+3 \cos \theta$ when $\theta=\pi$ | |

Given the equation of a function, how might you determine the value(s) at which the function has a horizontal tangent? Explain your reasoning.

At what value(s) of x will the function $f(x)=x^{3}+x$ have a horizontal tangent?

At what value(s) of θ at which the function $f(\theta)=\theta+\sin \theta$ has a horizontal tangent on the interval $[0,2 \pi)$?
\qquad

Lesson \#3 Homework

For exercises $1-12$, find the derivative of each function. Leave your answers with no negative or rational exponents and as single rational functions, when applicable.

1. $f(x)=5-2 x^{2}-3 x^{3}$	2. $h(x)=\frac{2 x^{3}+3 x^{2}-2 x}{x}$
3. $h(x)=\frac{3}{x^{7}}$	4. $g(x)=\frac{2 x^{5}}{x^{8}}$
$5 . f(\theta)=-3 \theta^{2}-\cos \theta$	$6 . h(x)=\sqrt[3]{x^{2}}$

9. $g(x)=(x+3)(2 x-1)^{2}$	$10 . h(x)=\frac{x^{2}+2 x-2}{x^{3}}$
$11 . f(x)=\frac{3 x}{\sqrt[3]{x}}$	$12 . h(x)=6 \sqrt{x}-3 \cos x$

13. For what value(s) of x will the slope of the tangent line to the graph of $h(x)=4 \sqrt{x}$ be -2 ? Find the equation of the line tangent to $h(x)$ at this/these x - values. Show your work.
14. Find the equation of the line tangent to the graph of $g(x)=\frac{2}{\sqrt[4]{x^{3}}}$ when $x=1$.
15. The line defined by the equation $\frac{1}{2} x+3=-2(y-3)$ is the line tangent to the graph of a function $f(x)$ when $x=a$. What is the value of $f^{\prime}(a)$? Show your work and explain your reasoning.
16. The line defined by the equation $y-3=-\frac{2}{3}(x+3)$ is the line tangent to the graph of a function $f(x)$ at the point $(-3,3)$. What is the equation of the normal line when $x=-3$. Explain your reasoning.
17. Determine the value(s) of x at which the function $f(x)=x^{4}-8 x^{2}+2$ has a horizontal tangent.
18. Determine the value(s) of θ at which the function $f(\theta)=\sqrt{3} \theta+2 \cos \theta$ has a horizontal tangent on the interval $[0,2 \pi)$.
19. For what value(s) of k is the line $y=4 x-9$ tangent to the graph of $f(x)=x^{2}-k x$?
